So, where are we now?

Probably confused.

But what we have learnt is that if you are to get the correct oil for your car you must consider what is the correct viscosity, the right level of performance and whether you have any special catalyst or exhaust filters that you need to protect. Get any one of these wrong and it could be very costly in repairs.

Isn’t there a better way?

Fortunately yes!

Although you can look through the handbook that came with your vehicle and then, armed with the information provided, go down to your local Motor Factor or Autoparts Store and study the fine print on the labels of the oils on offer until you find a match, there is another way.

Most of the well known lubricant suppliers and some of the bigger stores have the facility on their websites for you to simply put in the registration number of your vehicle and the system will do the rest. The lubricant industry has developed some independent databases that list all the requirements of practically any car which can be identified by model or, increasingly, by the registration mark. The DVLA provides a service that allows the exact make and model to be accurately found so that there is no chance of an error. Some of the sites will also be able to tell you the nearest stockist of the correct product if you also input your post-code. What could be simpler?

But it’s not all over yet!

Before we leave the subject of choosing the right oil there are a couple of other points that we need to consider.

If you change the oil in your car yourself then you will have to dispose of a quantity of used oil. Used oil is quite a nasty material and you should wear gloves to keep it off your skin. Also it should NEVER be poured down drains or onto land as it can really cause some damage to the environment. Fortunately most Councils now accept used oil at the recycling centres. If you want to find your nearest site then you can use a web site set up by the Environment Agency (www.oilbankline.org.uk) or alternatively call the Oil Bank Line on 03708 506 506.

So you have found the right oil for your vehicle, changed it and properly disposed of the old oil. Job done? Well not really. You still have to check the level from time to time.

Oil drain intervals are much longer these days then they were say 15 or 20 years ago. This is good news but the bad news is that this can mean that once the oil has been replaced it is sometimes forgotten. Most cars use a little oil and although engines are fitted with low oil indicators these should be seen as a last resort. It is much better to get into the habit of checking the oil level using the dip-stick on a regular basis, say at least once a month or more frequently if you see that you car does need regularly topping up.

Don’t forget to do this when the car is standing flat and not on sloping ground. If the engine has been running then leave a few minutes for the oil to find its way back into the sump. You might like to top up the windscreen washer bottle or check the tyres while you are waiting.

Also don’t overfill with oil. This can also cause problems as some of the oil can get carried over into areas where it’s not suppose to be such as catalysts and exhaust filters.

Now the job is done

I hope that these notes will assist you in finding the right oil for your car, changing it and properly disposing of the used oil.

It really doesn’t have to be complicated and if you do it right you should maximise the life of your engine and minimise repair and fuel costs.

Happy Motoring.

For more information on the safe handling of oil please visit the Oil Care Campaign website www.oilcare.org.uk

Choosing the right oil for your car

A guide to higher performance and lower emissions

Berkhamsted House
121 High Street, Berkhamsted
Hertfordshire, HP4 2DJ, United Kingdom
Tel: +44 (0)1442 875922
Website: www.ukla.org.uk
Why do oils have to be so complicated?

If you visit a local car parts supermarket or spend time on the web trying to find the type of engine oil you need, it is no surprise to notice just how many different types are available. A recent trip to such a store yielded 14 different oils in the store’s own brand alone. On top of these were over another 20 oils from different makers and this was just engine oils so didn’t include all the gear and transmission product on sale.

Why are there so many oils?

The grade of oil that is used in an engine is stipulated by the manufacturer of the engine or vehicle and, as engines have developed over time, so have the oils needed to lubricate them. Engines have needed to get smaller but more powerful, faster but quieter, longer lasting but with less frequent oil changes and all with engines that are much smaller than a few years ago. If we add to this the fact that many of the additives that have worked well in the past lubricating engines can now only be used at lower concentrations (to prevent the catalysts needed to reduce emission becoming damaged) you can see that modern oils are quite unlike their predecessors of twenty five years or so ago.

A short history lesson

Back around 1950 if you booked your car in for a service there was a very fair likelihood that the oil used would have been a 15W-40 multigrade meeting the industry-standard American Petroleum Institute or API specs SH/CF and probably very little would have been the right one.

The importance of the specification you need will be set by the car manufacturer or by the authorities of the country you are in (such as the German TÜV). The handbook of the car will probably recommend the use of a certain grade of engine oil. The grade of oil that is used in an engine is stipulated by the manufacturer of the engine or vehicle and, as engines have developed over time, so have the oils needed to lubricate them. Engines have needed to get smaller but more powerful, faster but quieter, longer lasting but with less frequent oil changes and all with engines that are much smaller than a few years ago. If we add to this the fact that many of the additives that have worked well in the past lubricating engines can now only be used at lower concentrations (to prevent the catalysts needed to reduce emission becoming damaged) you can see that modern oils are quite unlike their predecessors of twenty five years or so ago.

Improvements in the viscosity of oils became lower so less energy was used requiring less energy to pump around the engine. Naturally the engine must be designed to use a thinner product, if the engine has excessive wear can occur.

So, to recap, over time we have seen oils for car and van engines moving from 20W-50 through 15W-40s and 10W-40s to 5W-30s and 5W-40s and now on to 0W-20s. Only in the most unusual types will be right for your car depending on the age of your vehicle. But just from the fact that there are at least six different viscosity grades, you can begin to see why there are so many different products from which you have the find the right one.

When oil is described as “15W-40” - what does this mean?

Today, almost all oils for car and van engines are "multigrade" products. This means that they can be used both in summer and winter months and there is none of the oil changes with which our grandparents had to contend. Both numbers represent the viscosity or thickness of the oil and the higher the number the thicker the oil. The first number (the one before the “W”) represents the thickness when cold; i.e. how the oil behaves on a cold winter’s morning while the second number is related to how the oil behaves as the engine is running hot.

When oil is described as “5W-30” - what does this mean?

Today, almost all oils for car and van engines are "multigrade" products. This means that they can be used both in summer and winter months and there is none of the oil changes with which our grandparents had to contend. Both numbers represent the viscosity or thickness of the oil and the higher the number the thicker the oil. The first number (the one before the “W”) represents the thickness when cold; i.e. how the oil behaves on a cold winter’s morning while the second number is related to how the oil behaves as the engine is running hot.

Performance matters

However, this is just a start. Not only is the thickness or viscosity of the oil important, it is the level of performance that the additives it contains can bring to the product. Additives are used to enhance the performance of the oil, ensuring it meets the needs of today’s motorists. There have been a number of ways of describing this performance level over the years but currently there are two main systems in place.

The American Petroleum Institute (API) has a series of “S” grades for cars and vans with petrol engines. Back in the 1990s, there was a 5W-30 fully synthetic product being produced which was considered to cater for all needs. The level of viscosity and the ability to allow a longer drain interval – both characteristics of moving to a higher specification 5W synthetic grade.

The importance of the need to have longer drain intervals also meant that another product, the 15W-40 fully synthetic product were becoming increasingly popular with drivers who liked the idea of the additional performance that the synthetic additives and wanted to reduce wear at start-up but were not prepared to use the thicker 15W-30 products. In terms of the viscosity grades available this brings up almost to date. Recently we have seen oils entering some engines that were not so thick when cold that they could circulate more easily around the engine at start-up and this need was met by the introduction of 10W-40 oils. These oils could flow at temperatures 5 degrees Calcius, lower than a 15W-40 and 10 degrees better than a 20W-50 meaning that on cold mornings they would get round the engine quicker and delivered better fuel economy than an oil like this you will get better fuel economy.

Lowering emissions

We have seen that with the drive for better fuel economy, the need is to ensure that the engine has less wear which means that if the engine is working harder the pump and other components will require less energy.

When oil is described as “15W-40” - what does this mean?

Today, almost all oils for car and van engines are "multigrade" products. This means that they can be used both in summer and winter months and there is none of the oil changes with which our grandparents had to contend. Both numbers represent the viscosity or thickness of the oil and the higher the number the thicker the oil. The first number (the one before the “W”) represents the thickness when cold; i.e. how the oil behaves on a cold winter’s morning while the second number is related to how the oil behaves as the engine is running hot.

When oil is described as “5W-30” - what does this mean?

Today, almost all oils for car and van engines are "multigrade" products. This means that they can be used both in summer and winter months and there is none of the oil changes with which our grandparents had to contend. Both numbers represent the viscosity or thickness of the oil and the higher the number the thicker the oil. The first number (the one before the “W”) represents the thickness when cold; i.e. how the oil behaves on a cold winter’s morning while the second number is related to how the oil behaves as the engine is running hot.

Performance matters

However, this is just a start. Not only is the thickness or viscosity of the oil important, it is the level of performance that the additives it contains can bring to the product. Additives are used to enhance the performance of the oil, ensuring it meets the needs of today’s motorists. There have been a number of ways of describing this performance level over the years but currently there are two main systems in place.

The American Petroleum Institute (API) has a series of “S” grades for cars and vans with petrol engines. Back in the 1990s, there was a 5W-30 fully synthetic product being produced which was considered to cater for all needs. The level of viscosity and the ability to allow a longer drain interval – both characteristics of moving to a higher specification 5W synthetic grade.

The importance of the need to have longer drain intervals also meant that another product, the 15W-40 fully synthetic product were becoming increasingly popular with drivers who liked the idea of the additional performance that the synthetic additives and wanted to reduce wear at start-up but were not prepared to use the thicker 15W-30 products. In terms of the viscosity grades available this brings up almost to date. Recently we have seen oils entering some engines that were not so thick when cold that they could circulate more easily around the engine at start-up and this need was met by the introduction of 10W-40 oils. These oils could flow at temperatures 5 degrees Calcius, lower than a 15W-40 and 10 degrees better than a 20W-50 meaning that on cold mornings they would get round the engine quicker and delivered better fuel economy than an oil like this you will get better fuel economy.

Lowering emissions

We have seen that with the drive for better fuel economy, the need is to ensure that the engine has less wear which means that if the engine is working harder the pump and other components will require less energy.

When oil is described as “15W-40” - what does this mean?

Today, almost all oils for car and van engines are "multigrade" products. This means that they can be used both in summer and winter months and there is none of the oil changes with which our grandparents had to contend. Both numbers represent the viscosity or thickness of the oil and the higher the number the thicker the oil. The first number (the one before the “W”) represents the thickness when cold; i.e. how the oil behaves on a cold winter’s morning while the second number is related to how the oil behaves as the engine is running hot.

When oil is described as “5W-30” - what does this mean?

Today, almost all oils for car and van engines are "multigrade" products. This means that they can be used both in summer and winter months and there is none of the oil changes with which our grandparents had to contend. Both numbers represent the viscosity or thickness of the oil and the higher the number the thicker the oil. The first number (the one before the “W”) represents the thickness when cold; i.e. how the oil behaves on a cold winter’s morning while the second number is related to how the oil behaves as the engine is running hot.

Performance matters

However, this is just a start. Not only is the thickness or viscosity of the oil important, it is the level of performance that the additives it contains can bring to the product. Additives are used to enhance the performance of the oil, ensuring it meets the needs of today’s motorists. There have been a number of ways of describing this performance level over the years but currently there are two main systems in place.

The American Petroleum Institute (API) has a series of “S” grades for cars and vans with petrol engines. Back in the 1990s, there was a 5W-30 fully synthetic product being produced which was considered to cater for all needs. The level of viscosity and the ability to allow a longer drain interval – both characteristics of moving to a higher specification 5W synthetic grade.

The importance of the need to have longer drain intervals also meant that another product, the 15W-40 fully synthetic product were becoming increasingly popular with drivers who liked the idea of the additional performance that the synthetic additives and wanted to reduce wear at start-up but were not prepared to use the thicker 15W-30 products. In terms of the viscosity grades available this brings up almost to date. Recently we have seen oils entering some engines that were not so thick when cold that they could circulate more easily around the engine at start-up and this need was met by the introduction of 10W-40 oils. These oils could flow at temperatures 5 degrees Calcius, lower than a 15W-40 and 10 degrees better than a 20W-50 meaning that on cold mornings they would get round the engine quicker and delivered better fuel economy than an oil like this you will get better fuel economy.

Lowering emissions

We have seen that with the drive for better fuel economy, the need is to ensure that the engine has less wear which means that if the engine is working harder the pump and other components will require less energy.